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ABSTRACT
In recent years, with the rapid development of big data technology,
the matrix completion is often used for data recovery, and how to
improve the accuracy of matrix completion is a key issue. This paper
proposes a matrix completion method based on pattern classifica-
tion, called PCRE, to improve data recovery performance. Since the
hidden similarity within the data is a significant factor affecting the
overall performance, the method PCRE uses non-negative matrix
decomposition to extract the patterns of the data and accordingly
rearranges the data matrix to fit for the matrix completion. Experi-
ments are conducted by using PM 10 monitoring data collected by
34 sensors in Beijing in 2019 (totally 351 days). The results show
that, compared with existing methods, PCRE improves the accuracy
of data recovery with a shorter computation time.
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1 INTRODUCTION
In the information era, massive data are collected by different kinds
of devices and analyzed by various data processing algorithms. Due
to some reasons, such as a high sampling cost or an equipment
failure, sometimes only a part of the data is gathered. In other
words, some data is lost or invalid. When the collected data is
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incomplete, the further use of data may not obtain desired results.
For example, the sensors monitoring the air quality may lose the
data at a certain time due to the device failure, and it may lead
to wrong data about air quality at this time and hence affect the
people’s health. Therefore, the recovery of missing data is important
for the social production and the people’s lives.

As one of the main approaches of data recovery, matrix comple-
tion effectively fills the missing items according to some known
information, so as to obtain more complete and accurate informa-
tion for users to make decision. It has been found that the matrix
completion performance is closely related to the similarity inside
the data [1]. However, the data correlation has not been fully uti-
lized in the process of data recovery. How to improve the matrix
completion considering the similar features of data is a key problem.

This paper proposes a matrix completion method based on pat-
tern classification, called PCRE. The method uses a non-negative
matrix decomposition algorithm to extract the patterns of the data,
and then the data are sorted and rearranged according to the pat-
terns. In this way, the similar data are put together as a block, and
hence the matrix completion method taking the rearranged data as
input data has a higher recovery accuracy.

The main contributions of this paper are listed below.

• A matrix completion algorithm based on pattern classifica-
tion is proposed, which consists of two main steps. Firstly, a
pattern classification method based on non-negative matrix
decomposition is proposed to fully explore the data simi-
larity. Then a matrix rearrangement method based on the
patterns is designed to reduce the lower sampling limit.
• We use Beijing PM 10 data in 2019[2] as an example to test
the recovery performance of the matrix completion method
based on pattern classification. We define a matrixMN×T to
present PM 10 data, in which N is the number of sensors and
T is the number of time slots. A popular matrix completion
algorithm OptSpace is selected, and the OptSpace and PCRE-
OptSpace are compared. The experiments demonstrate the
accuracy and the time-efficiency of the method proposed in
this paper.

The full paper is organized as follows.

• Section 1 introduces the research background, the brief in-
troduction to our work and the main contributions of this
paper.
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• Section 2 introduces the related work to relevant techniques
in this paper and provides an introduction to the common
algorithms for matrix completion and feature extraction.
• Section 3 proposes a pattern classification method, uses non-
negativematrix decomposition tomine the implied relevance
of the data, and then rearranges data matrix according to
the patterns.
• Section 4 presents the performance evaluation, in which we
compare the original matrix completion algorithm OptSpace
and the matrix completion integrated with our pattern clas-
sification and data rearrangement, called PCRE-OptSpace.
• Section 5 concludes the paper and provides an outlook for
future work.

2 RELATEDWORK
Candés et al [3] proved that a low-rank matrix with size n1×n2 and
rank r can be recovered by solving a simple convex optimization
problem when a sufficient number of samples are provided.

The article demonstrates that the sampling rate needs to satisfy

the condition m ≥ Cn
6/5r logn, where C is a constant, and n =

max{n1,n2}. Both r and n affect the value of m, and the lower
limit on the number of samples required for matrix recovery can
be reduced by reshaping the matrix shape, which in turn leads to
better recovery performance [4].

An inadequate number of samples usually lead to a long time
to recover the missing data and a low accuracy of the recovered
data, sometimes the matrix completion algorithmmay not converge.
Moreover, although matrix completion performs better than other
approaches for the data with low sampling rate, its performance is
greatly affected when the missing rate is very high. Therefore, the
matrix completion aiming at accurate data recovery at low sampling
rate attracts more attentions.

Because the correlation property within the data causes the data
to be sparse, the sparsity of data makes it a feasible way to infer the
rest from the collected part. Qu et al.[5] demonstrated that similarity
is an important factor affecting the recovery performance of matrix
completion.

Based on the analysis of a large amount of air quality monitoring
data, Wang et al.[6] exposed the potential temporal stability, spatial
correlation and other characteristics of air quality monitoring data.
Then they proposed a matrix rearrangement principle, which can
reduce the lower sampling limit.

Peng et al.[7] [8]used the non-negative matrix decomposition
method [9] to mine the internal similarity characteristics of the
data, and processed the data accordingly, which effectively improve
the utilization of data similarity.

At present, the matrix completion algorithms mainly include
four categories, small-scale matrix completion algorithms, kernel
parametric minimization algorithms, Grassmannian manifold mini-
mization algorithms, and other novel algorithms [10] [11].

The Grassmannian manifold minimization solutions including
the OptSpace algorithm [17], the SET algorithm [1]and others.
Other novel algorithms include low-rank matrix fitting algorithm
[18], truncated kernel parametric algorithm [19]. Chen et al.[20]also
develop a procedure to compensate for the bias of the widely used

convex and non-convex estimators. The resulting de-biased estima-
tors admit nearly accurate non-asymptotic distributional guaran-
tees.

The existingmatrix completion algorithms have some limitations.
Firstly, the data recovery performance will be greatly affected if the
data missing ratio is high. Secondly, as the rank or dimension of the
data matrix increases, the computation time increases significantly
and the relative error ratio of matrix recovery will be larger [3] [10]
[21].

In order to improve the recovery performance of matrix com-
pletion, in this paper we explore the similarity properties implied
within themeteorological data PM 10, and rearrange the data accord-
ingly to reduce the lower sampling limit and increase the accuracy
of data recovery.

3 PATTERN CLASSIFICATION AND MATRIX
REARRANGEMENT

Existing research [6] showed that meteorological data implies simi-
lar features including the temporal periodicity, the location corre-
lation, etc. In this section, we explore the hidden patterns of the
monitoring data by using the non-negative matrix decomposition,
and then rearrange the data matrix according to the similarity. We
use 2019 Beijing PM 10 monitoring data as the original data to
evaluate our data recovery method based on pattern classification.
The dataset is obtained from Beijing Municipal Ecological and En-
vironmental Monitoring Center [2]. The data were collected by 34
sensors widely distributed in Beijing.

We define thematrixMN×T , in which N is the number of sensors
and T is the number of time slots.mnt is the data measured by the
nth sensor at the tth time slot.

3.1 Pattern Classification
3.1.1 PatternQuantity. When performing a non-negative matrix
decomposition, the number of fundamental patterns q needs to
be determined. We select the proper value of q according to the
background features of the specific problem. In this scenario, we
assume the initial range of q from 3 to 14, and we use each value
of q to conduct the non-negative matrix decomposition. Assuming
that there are n data matrices (a data matrix is the data collected
during a day), there are n decomposition results for each value of
parameter q. Calculate the Euclidean distance D for each row of
these matrices, and then the value of q having the smallest D is
selected.

3.1.2 Matrix Decomposition. After determining q, the coefficient
matrix C and the pattern matrix P are obtained by performing non-
negative matrix decomposition (the number of basic patterns is set
to q). The non-negative decomposition of a matrixM is

M ≈ CP (1)

where C is the coefficient matrix,C ∈ RN×q+ , and P is pattern matrix,
P ∈ R

q×T
+ .

Define the objective function as

min
∑
i, j

[
Mi j − (CP)i j

]2

s.t. C ≥ 0, P ≥ 0
(2)
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Figure 1: Patterns of Beijing PM 10.

It is used to get comparison of approximation degree between the
matrix after decomposition and the original matrix.

To make the pattern matrix more accurate, we utilize the nor-
malization method to minimize the difference with the following
formula:

Cik ← Cik ·
(V PT )ik
(CPPT )ik

Pk j ← Pk j ·
(CTV )k j
(CTCP)k j

(3)

3.1.3 Pattern Classification. Matrix C includes the coefficients of
each sensor position with respect to the corresponding basic pat-
terns. In other words, one row of C indicates the proportion and
scale of each basic patterns at a sensor position. According to the
mean value of C, we divide all sensors into q patterns. The pattern
matrix P has some specific practical meanings. Since PM 10 is in-
fluenced by various types of human production, such as factory
emissions, vehicle emissions, commercial area emissions, etc., the
different patterns indicate different kinds of locations. 1 shows the
three patterns of PM 10 over the day.
• Pattern 1 has a highest peak during 8am to 12am, and the
overall concentration of PM 10 in pattern 1 is high. This
is in line with city traffic flow. Therefore, pattern 1 can be
regarded as a pattern deployed near the roads.
• Pattern 2 has peaks in the early hours and at night with
significantly higher values than the other two patterns. It
is similar to the change rules of exhausting emissions by
factories. Thus, we regard pattern 2 as sensors near factories.
• Pattern 3 has peaks around morning, noon and night, which
are basically consistent with the commute and meal times.
Therefore, pattern 3 is regarded as a pattern near the com-
mercial area.

In original PM 10 data matrix, the sensor data having the same
pattern are not listed next to each other. In order to make full use of
the implicit correlation and improve the completion performance,
the sensor data in the original PM 10 data matrix is classified into 3
groups according to their patterns.

As shown in 2, in the original data, sensors with the same pattern
are not adjacent; after obtaining the pattern information, we arrange
the sensors having the same pattern to adjacent positions.

3.2 Matrix Rearrangement
Existing studies show that, data rearrangement (changing the shape
of the data matrix) helps to improve the performance of matrix
completion. Hence, in this section, we design a data rearrangement
algorithm to adjust the data. In the original data matrix, the number
of rows and the number of columnsmay be different, and sometimes

Figure 2: An example of PCRE.

the difference is huge. Existing research shows that if the matrix
is rearranged into a square shape that has the same number of
rows and columns, the matrix completion performance would be
better [6]. Some studies proved that the segmentation of rows or
columns based on period will not increase the rank of the matrix
too much, and the dimensions of row space and column space of
the rearranged matrix will not change. Therefore, the matrix is
pruned according to the period h (which is usually determined by
period of data change). If the number of rows is insufficient after
clipping, some empty rows are added as a padding matrix, so that
the rearranged data matrix has a square shape.

Algorithm 1 Matrix rearrangement algorithm
1: input: MT×N (T ≫ N ) , h;
2: output: W;
3: calculate the possible number of rows after rearrangement
p =
√
T × N ;

4: calculate the number of rows in a sub-matrix m = p
h × h;

5: calculate the number of sub-matrices that the original matrix
M can be partitioned into num = T

m ;
6: split the original matrix M into num sub-matrices;
7: if the number of rows in the last submatrix, l, is smaller than
m, then
8: add a padding matrix with m-l rows;
9: fill the padding matrix with value 0;
10: end if
11: establish the reshaped matrix W by integrating num
sub-matrices;
12: return W;

Take 2 as an example. 2 b shows the process of matrix rearrange-
ment and matrix completion. 2 b (4) shows the matrix rearranged
according to the Algorithm 1, that has a square shape and the
supplement rows are filled with zero. Then the matrix completion
algorithm is used to recovery the rearranged matrix. Finally, the
original shape of the matrix is reversed by conducting the inverse
operations of the rearrangement algorithm.

4 PERFORMANCE EVALUATIONS
In our experiments, the classical matrix completion algorithm
OptSpace is used for data recovery, while the OptSpace with our
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Figure 3: Error Ratio Results.

pattern classification and matrix rearrangement is called PCRE-
OptSpace. OptSpace, as a Grassmannian flow minimization algo-
rithm, is suitable for large-scale data processing and designed based
on singular value decomposition algorithm to solve low rank matrix
completion problem.

The experiments are carried out using the same computer server
which is equipped with Intel(R) Core(TM) i7-5500U CPU @2.40
GHz and 8 GB memory in Windows 8.1 x64 OS.

In order to evaluate the data recovery performance, three metrics
are analyzed, including error ratio (ER), root mean square error
(RMSE) and calculation time (Time). In order to analyze the influ-
ence of the low sample ratio, the data sample ratio is set from 0.15
to 0.3. We change the rank of matrix from 9 to 18.

4.1 Error Ratio
The error ratio is calculated by

ER =

√∑
(i, j)∈Ω̄

(
wi j − ŵi j

)2∑
(i, j)∈Ω̄ ŵ2

i j
(4)

wherewi j and ŵi j are the original and recovered data, respectively,
and Ω̄ is a set containing the time slots and sensor locations with
unknown data.

Note that only the unobserved data rather than the known data
are used to compute the error ratio. A smaller error ratio indicates
a smaller gap between the recovered data and the original data.

As shown in 3, compared with the original matrix completion
solution OptSpace, the solution presented in this paper PCRE-based
OptSpace (PCRE-OptSpace) achieves a much lower error ratio.
Specifically, the mean error ratio of OptSpace is 0.039475000000000,
while the mean error ratio of PCRE-OptSpace is 0.015236979166667.
The PCREmethod reduces the error ratio to 0.3860 times the original
one. These experiments show that the PCRE scheme can improve
the performance of Error ratio.

4.2 RMSE
Another metric RMSE is calculated by Unlike error ratio, in RMSE
all data elements are involved in the calculation.

As illustrated in 4, PCRE-OptSpace achieves a much lower RMSE
than OptSpace. The mean RMSE of OptSpace is 0.033999399038462,
while the mean RMSE of PCRE-OptSpace is 0.012175000066600000,

Figure 4: RMSE Results.

and the PCRE method reduces the RMSE to 0.3581 times the origi-
nal one. This part shows that the PCRE scheme can improve the
performance of RMSE.

4.3 Time
We use the tic and toc functions to calculate the computation time.

In 5, our scheme PCRE-OptSpace achieves a much shorter cal-
culation time. The mean time of OptSpace is 55.700000000000000,
while the mean time of PCRE-OptSpace is 30.206477272727270.
PCRE method reduces the calculation time to 0.5423 times the orig-
inal one. This part shows that the PCRE scheme can cut down the
computation time of matrix completion.

4.4 Experiment Conclusion
PCRE method is evaluated in several sets of experiments based
on real Beijing PM 10 data, applying three performance metrics
including error ratio, RMSE, and computation time. These exper-
imental results above show that under low sample ratio, original
matrix completion method (OptSpace) has low recovery accuracy
and long computation time. Under the same conditions, PCRE im-
proves data recovery performance by mining data similarity and
lowering the lower sampling limit. The experiments demonstrate
the effectiveness of the PCRE method.
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Figure 5: Computation Time Results.

5 CONCLUSION
In order to improve the accuracy and efficiency of data matrix
completion, this paper proposes a matrix completion method based
on pattern classification, named PCRE. Before the data completion,
the data patterns are extracted from the original data by using
the pattern analysis method, so as to classify the original data and
efficiently discover the similarity of the data. Then, we rearrange the
data matrix to move the similar data together and fill supplement
matrix with zero. Experiments based on real PM 10 data in Beijing
show that PCRE improves the accuracy of data recovery and reduces
the computation time of data completion.
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